Knee loading stimulates cortical bone formation in murine femurs

نویسندگان

  • Ping Zhang
  • Min Su
  • Shigeo M Tanaka
  • Hiroki Yokota
چکیده

BACKGROUND Bone alters its architecture and mass in response to the mechanical environment, and thus varying loading modalities have been examined for studying load-driven bone formation. The current study aimed to evaluate the anabolic effects of knee loading on diaphyseal cortical bone in the femur. METHODS Using a custom-made piezoelectric loader, 0.5-N loads were laterally applied to the left knee of C57/BL/6 mice at 5, 10, 15, and 20 Hz for 3 minutes per day for 3 consecutive days. Animals were sacrificed for examination 13 days after the last loading. The contralateral femur was used as a non-loading control, and the statistical significance of loading effects was evaluated with p < 0.05. RESULTS Although diaphyseal strains were measured as small as 12 mustrains, bone histomorphometry clearly demonstrated frequency-dependent enhancement of bone formation. Compared to a non-loading control, bone formation on the periosteal surface was significantly enhanced. The loading at 15 Hz was most effective in elevating the mineralizing surface (1.7 x; p < 0.05), mineral apposition rate (1.4 x; p < 0.001), and bone formation rate (2.4 x; p < 0.01). The loading at 10 Hz elevated the mineralizing surface (1.4 x; p < 0.05), mineral apposition rate (1.3 x; p < 0.01), and bone formation rate (1.8 x; p < 0.05). The cross-sectional cortical area and the cortical thickness in the femoral diaphysis were significantly increased by loading at 10 Hz (both 9%) and 15 Hz (12% and 13%, respectively). CONCLUSION The results support the anabolic effects of knee loading on diaphyseal cortical bone in the femur with small in situ strain, and they extend our knowledge on the interplay between bone and joints. Strengthening the femur contributes to preventing femoral fractures, and the discovery about the described knee loading might provide a novel strategy to strengthen osteoporotic bones. Further analyses are required to understand the biophysical and molecular mechanism behind knee loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diaphyseal bone formation in murine tibiae in response to knee loading.

Mechanical stimulation is critical for bone architecture and bone mass. The aim of this study was to examine the effects of mechanical loads applied to the knee. The specific question was whether loads applied to the tibial epiphysis would enhance bone formation in the tibial diaphysis. In C57/BL/6 mice, loads of 0.5 N were applied for 3 min per day for 3 days at 5, 10, or 15 Hz. Bone samples w...

متن کامل

Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice

Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associa...

متن کامل

Structural properties of a new design of composite replicate femurs and tibias.

The purpose of this study was to compare the structural properties of a new vs. established design of composite replicate femurs and tibias. The new design has a cortical bone analog consisting of short-glass-fiber-reinforced (SGFR) epoxy, rather than the fiberglass-fabric-reinforced (FFR) epoxy in the currently available design. The hypothesis was that this new cortical bone analog would impro...

متن کامل

Determination of Relationships between the Ultrasound Velocity and the Physical Properties of Bovine Cortical Bone Femur

Accurate measurements of physical characteristics of bone are essential for diagnosis, assessment of change following treatment, and therefore, indirectly, for evaluation of new forms of therapy. This is particularly true of osteoporosis and aging skeleton, in which fractures occur easily. Methods: In this study an ultrasonic system was set-up and calibrated on Plexiglas tubes of variable thick...

متن کامل

In Vivo Tibial Compression Stimulates Cortical Bone Formation in Young Adult and Aged Male BALB/c Mice

Introduction: Age-related osteoporosis is characterized by diminished bone formation. Animal studies indicate that the aged skeleton is relatively unresponsive to mechanical loading [1-3], supporting the concept that a decrease in mechanoresponsiveness contributes to agerelated osteoporosis. Recently, we established that “aged” 22-month old male BALB/c mice are osteoporotic compared to “young a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Musculoskeletal Disorders

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2006